Diameter-dependent dopant location in silicon and germanium nanowires.

نویسندگان

  • Ping Xie
  • Yongjie Hu
  • Ying Fang
  • Jinlin Huang
  • Charles M Lieber
چکیده

We report studies defining the diameter-dependent location of electrically active dopants in silicon (Si) and germanium (Ge) nanowires (NWs) prepared by nanocluster catalyzed vapor-liquid-solid (VLS) growth without measurable competing homogeneous decomposition and surface overcoating. The location of active dopants was assessed from electrical transport measurements before and after removal of controlled thicknesses of material from NW surfaces by low-temperature chemical oxidation and etching. These measurements show a well-defined transition from bulk-like to surface doping as the diameter is decreased <22-25 nm for n- and p-type Si NWs, although the surface dopant concentration is also enriched in the larger diameter Si NWs. Similar diameter-dependent results were also observed for n-type Ge NWs, suggesting that surface dopant segregation may be general for small diameter NWs synthesized by the VLS approach. Natural surface doping of small diameter semiconductor NWs is distinct from many top-down fabricated NWs, explains enhanced transport properties of these NWs and could yield robust properties in ultrasmall devices often dominated by random dopant fluctuations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gold catalytic Growth of Germanium Nanowires by chemical vapour deposition method

Germanium nanowires (GeNWs) were synthesized using chemical vapor deposition (CVD) based on vapor–liquid–solid (VLS) mechanism with Au nanoparticles as catalyst and germanium tetrachloride (GeCl4) as a precursor of germanium. Au catalysts were deposited on silicon wafer as a thin film, firstly by sputtering technique and secondly by submerging the silicon substrates in Au colloidal s...

متن کامل

Impurity-limited mobility and variability in gate-all-around silicon nanowires

Yann-Michel Niquet, a) Hector Mera, and Christophe Delerue L Sim, SP2M, UMR-E CEA/UJF-Grenoble 1, INAC, Grenoble, France IM2NP, UMR CNRS 6242, Marseille, France IEMN Dept. ISEN, UMR CNRS 8520, Lille, France We discuss the scattering of electrons and holes by charged dopant impurities in 〈001〉, 〈110〉 and 〈111〉 gate-all-around silicon nanowires (Si NWs) with diameters in the 2-8 nm range. We show...

متن کامل

Electrodeposition at room temperature of amorphous silicon and germanium nanowires in ionic liquid

The electrodeposition at room temperature of silicon and germanium nanowires from the airand water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P1,4) containing SiCl4 as Si source or GeCl4 as Ge source is investigated by cyclic voltammetry. By using nanoporous polycarbonate membranes as templates, it is possible to reproducibly grow pure silicon and germ...

متن کامل

Silicon nanowire devices

Transport measurements were carried out on 15–35 nm diameter silicon nanowires grown using SiH4 chemical vapor deposition via Au or Zn particle-nucleated vapor-liquid-solid growth at 440 °C. Both Al and Ti/Au contacts to the wires were investigated. The wires, as produced, were essentially intrinsic, although Au nucleated wires exhibited a slightly higher conductance. Thermal treatment of the f...

متن کامل

Surface depletion thickness of p-doped silicon nanowires grown using metal-catalysed chemical vapour deposition

An accurate evaluation of the radial dopant profile in a nanowire is crucial for designing future nanoscale devices synthesized using bottom-up techniques. We developed a very slow wet chemical etchant for gradually reducing the diameters of metal-catalysed, boron-doped silicon nanowires with varying diameters and lengths. Particular care has been taken to perform the experiment at room tempera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 36  شماره 

صفحات  -

تاریخ انتشار 2009